PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices

نویسندگان

  • Salvatore A. Pullano
  • Ifana Mahbub
  • Syed K. Islam
  • Antonino S. Fiorillo
چکیده

This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of laser-triggered gold nanoparticle-grafted dual light and temperature-responsive polymeric sensor for the recognition of thioguanine as anti-tumor agent

Objective(s): Today, there is an urgent need for improved sensor materials for drug sensing and effective monitoring and interventions in this area are highly required to struggle drug abuse. The present study aimed to synthesize a thioguanine-responsive sensor based on a nanocomposite consisting of AuNP-grafted light- and temperature-responsive poly butylmethacrylate-co-acrylamide-co-methacryl...

متن کامل

Multifunctional Flexible PVDF-TrFE/BaTiO3 Based Tactile Sensor for Touch and Temperature Monitoring

This paper presents an enhanced piezoelectricity based sensor for touch and temperature sensing. The sensor is realized over flexible polyimide film, making it suitable for application like e-skin. The sensing material is composed of Polyvinylidene Fluoride-Trifluoroethylene (PVDF-TrFE) and Barium Titanate (BaTiO3) nanoparticles. While, the piezoelectric polymer PVDF-TrFE ensures the flexibilit...

متن کامل

Measuring the deposited energy from a non-ionizing laser beam in water by digital holographic interferometry

Digital Holographic interferometry is a powerful and widely used optical technique for accurate measurement of variations in physical quantities such as density, refractive index, and etc. In this study, an experimental digital holographic interferometry setup was designed and used to measure the amount of energy changes induced by absorption of radiation from a non-ionizing infrared laser beam...

متن کامل

Review of Recent Metamaterial Microfluidic Sensors

Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design...

متن کامل

Voltage Response of Pyroelectric PVDF Detector to Pulse Source of Optical Radiation

Voltage response of a designed and constructed pyroelectric PVDF detector to pulse radiation was experimentally investigated. The detector performance has been tested and its time parameters, response linearity as a function of energy and width of optical pulses, frequency response and temperature characteristics were determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017